skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Yuxuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While advances in fairness and alignment have helped mitigate overt biases exhibited by large language models (LLMs) when explicitly prompted, we hypothesize that these models may still exhibit implicit biases when simulating human behavior. To test this hypothesis, we propose a technique to systematically uncover such biases across a broad range of sociodemographic categories by assessing decision-making disparities among agents with LLM-generated, sociodemographically-informed personas. Using our technique, we tested six LLMs across three sociodemographic groups and four decision-making scenarios. Our results show that state-of-the-art LLMs exhibit significant sociodemographic disparities in nearly all simulations, with more advanced models exhibiting greater implicit biases despite reducing explicit biases. Furthermore, when comparing our findings to real-world disparities reported in empirical studies, we find that the biases we uncovered are directionally aligned but markedly amplified. This directional alignment highlights the utility of our technique in uncovering systematic biases in LLMs rather than random variations; moreover, the presence and amplification of implicit biases emphasizes the need for novel strategies to address these biases. 
    more » « less
    Free, publicly-accessible full text available June 23, 2026
  2. As a pervasive issue, missing data may influence the data modeling performance and lead to more difficulties of completing the desired tasks. Many approaches have been developed for missing data imputation. Recently, by taking advantage of the emerging generative adversarial network (GAN), an effective missing data imputation approach termed generative adversarial imputation nets (GAIN) was developed. However, its modeling architecture may still lead to significant imputation bias. In addition, with the GAN structure, the training process of GAIN may be unstable and the imputation variation may be high. Hence, to address these two limitations, the ensemble GAIN with selective multi-generator (ESM-GAIN) is proposed to improve the imputation accuracy and robustness. The contributions of the proposed ESM-GAIN consist of two aspects: (1) a selective multi-generation framework is proposed to identify high-quality imputations; (2) an ensemble learning framework is incorporated for GAIN imputation to improve the imputation robustness. The effectiveness of the proposed ESM-GAIN is validated by both numerical simulation and two real-world breast cancer datasets. 
    more » « less